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LETTER TO THE EDITOR

Quasi-exactly solvable quartic potential

Carl M Bender† and Stefan Boettcher‡§
† Department of Physics, Washington University, St Louis, MO 63130, USA
‡ Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

Received 19 January 1998

Abstract. A new two-parameter family of quasi-exactly solvable quartic polynomial potentials
V (x) = −x4 + 2iax3 + (a2 − 2b)x2 + 2i(ab − J )x is introduced. Heretofore, it was believed
that the lowest-degree one-dimensional quasi-exactly solvable polynomial potential is sextic.
This belief is based on the assumption that the Hamiltonian must be Hermitian. However,
it has recently been discovered that there are huge classes of non-Hermitian,PT -symmetric
Hamiltonians whose spectra are real, discrete, and bounded below. Replacing hermiticity by the
weaker condition ofPT symmetry allows for new kinds of quasi-exactly solvable theories. The
spectra of this family of quartic potentials discussed here are also real, discrete and bounded
below and the quasi-exact portion of the spectra consists of the lowestJ eigenvalues. These
eigenvalues are the roots of aJ th-degree polynomial.

Quantum-mechanical potentials are said to bequasi-exactly solvable(QES) if a finite portion
of the energy spectrum and associated eigenfunctions can be found exactly and in closed
form [1]. QES potentials depend on a parameterJ ; for positive integer values ofJ one
can find exactly the firstJ eigenvalues and eigenfunctions, typically of a given parity. QES
systems can be classified using an algebraic approach in which the Hamiltonian is expressed
in terms of the generators of a Lie algebra [2–5]. This approach generalizes the dynamical-
symmetry analysis ofexactly solvablequantum-mechanical systems, whoseentire spectrum
may be found in closed form by algebraic means [6].

An especially simple and well known example of a QES potential [7] is

V (x) = x6− (4J − 1)x2. (1)

The Schr̈odinger equation,−ψ ′′(x)+ [V (x)−E]ψ(x) = 0, hasJ even-parity solutions of
the form

ψ(x) = e−x
4/4

J−1∑
k=0

ckx
2k. (2)

The coefficientsck for 06 k 6 J − 1 satisfy the recursion relation

4(J − k)ck−1+ Eck + 2(k + 1)(2k + 1)ck+1 = 0 (3)

where we definec−1 = cJ = 0. The simultaneous linear equations (3) have a nontrivial
solution forc0, c1, . . . , cJ−1 if the determinant of the coefficients vanishes. For each integer
J this determinant is a polynomial of degreeJ in the variableE. The roots of this
polynomial are all real and are theJ quasi-exact energy eigenvalues of the potential (1).
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The lowest-degree one-dimensional QES polynomial potential that is discussed in the
literature is sextic. However, in this paper we introduce an entirely new two-parameter
class of QESquartic polynomial potentials. The spectra of this family of potentials are
real, discrete, and bounded below. Like the eigenvalues of the potential (1), the lowestJ

eigenvalues of these potentials are the roots of a polynomial of degreeJ .
The potentials introduced here have not been discovered so far because they are

associated with non-Hermitian Hamiltonians. Recently, it has been found that there are
large classes of non-Hermitian Hamiltonians whose spectra are real and bounded below
[8, 9]. Although they are non-Hermitian, these Hamiltonians exhibit the weaker symmetry
of PT invariance. A class of these Hamiltonians,

H = p2− (ix)N (N > 2) (4)

was studied in [8]. The special caseN = 4 corresponds to the Hamiltonian

H = p2− x4. (5)

It is not at all obvious that this Hamiltonian has a positive, real, discrete spectrum. To verify
this property, we must continue analytically the Schrödinger equation eigenvalue problem
associated withH in (4) from the conventional harmonic oscillator (N = 2) to the case
N = 4. In doing so, the boundary conditions at|x| = ∞ rotate into the complexx plane.
At N = 4 the boundary conditions on the wavefunctionψ(x) read

lim
|x|→∞

ψ(x) = 0 (6)

where the limitx → ∞ is taken inside two wedges bounded by the Stokes’ lines of the
differential equation. The right wedge is bounded by the Stokes’ lines at 0◦ and−60◦ and
the left wedge is bounded by the Stokes’ lines at−120◦ and−180◦. The leading asymptotic
behaviour of the wavefunction is given by

ψ(x) ∼ e−ix3/3 (|x| → ∞). (7)

It is easy to see that the asymptotic conditions in (6) are satisfied byψ(x). A complete
discussion of the analytic continuation of eigenvalue problems into the complex plane is
given in [10]. Note that for all values ofN between 2 and 4, the Hamiltonian (4) is not
symmetric under parity. This parity noninvariance persists even atN = 4; eigenfunctions
ψ(x) of (5) are not symmetric (or antisymmetric) under the replacementx →−x.

In this paper we generalize the Hamiltonian (5) to the two-parameter class

H = p2− x4+ 2iax3+ (a2− 2b)x2+ 2i(ab − J )x (8)

wherea and b are real andJ is a positive integer. The wavefunctionψ(x) satisfies the
boundary conditions (6) and the differential equation

Eψ(x) = −ψ ′′(x)+ [−x4+ 2iax3+ (a2− 2b)x2+ 2i(ab − J )x]ψ(x). (9)

We obtain the QES portion of the spectrum ofH in (8) as follows. We make theansatz

ψ(x) = e−ix3/3−ax2/2−ibxPJ−1(x) (10)

where

PJ−1(x) = xJ−1+
J−2∑
k=0

ckx
k (11)

is a polynomial inx of degreeJ − 1. Substitutingψ(x) in (10) into the differential
equation (9), dividing by the exponential in (10), and collecting powers ofx, we obtain a
polynomial inx of degreeJ − 1. Setting the coefficients ofxk (16 k 6 J − 1) to 0 gives
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a system ofJ − 1 simultaneous linear equations for the coefficientsck (0 6 k 6 J − 2).
We solve these equations and substitute the values ofck into the coefficient ofx0. This
gives a polynomialQJ (E) of degreeJ in the energy eigenvalueE. The coefficients of this
polynomial are functions of the parametersa andb of the HamiltonianH in (8). The first
five of these polynomials are

Q1 = E − b2− a
Q2 = E2− (2b2+ 4a)E + b4+ 4ab2− 4b + 3a2

Q3 = E3− (3b2+ 9a)E2+ (3b4+ 18ab2− 16b + 23a2)E − b6− 9ab4+ 16b3

−23a2b2+ 48ab − 15a3− 16

Q4 = E4− (4b2+ 16a)E3+ (6b4+ 48ab2− 40b + 86a2)E2

+(−4b6− 48ab4+ 80b3− 172a2b2+ 320ab − 176a3− 96)E

+b8+ 16ab6− 40b5+ 86a2b4− 320ab3+ 176a3b2+ 240b2

−568a2b + 105a4+ 384a

Q5 = E5− (5b2+ 25a)E4+ (10b4+ 100ab2− 80b + 230a2)E3

+(−10b6− 150ab4+ 240b3− 690a2b2+ 1200ab − 950a3− 336)E2

+(5b8+ 100ab6− 240b5+ 690a2b4− 2400ab3

+1900a3b2+ 1696b2− 5488a2b + 1689a4+ 3360a)E

−b10− 25ab8+ 80b7− 230a2b6+ 1200ab5− 950a3b4− 1360b4

+5488a2b3− 1689a4b2− 8480ab2+ 7440a3b + 3072b − 945a5− 7632a2.

(12)

The roots ofQJ (E) are the QES portion of the spectrum ofH .
The polynomialsQJ (E) simplify dramatically if we substitute

E = F + b2+ Ja (13)

and

K = 4b + a2. (14)

The new polynomials have the form

Q1 = F
Q2 = F 2−K
Q3 = F 3− 4KF − 16

Q4 = F 4− 10KF 2− 96F + 9K2

Q5 = F 5− 20KF 3− 336F 2+ 64K2F + 768K

Q6 = F 6− 35KF 4− 896F 3+ 259K2F 2+ 7040KF − 225K3+ 25 600

Q7 = F 7− 56KF 5− 2016F 4+ 784K2F 3+ 35 712KF 2− 2304K3F

+288 000F − 55 296K2

Q8 = F 8− 84KF 6− 4032F 5+ 1974K2F 4+ 132 480KF 3− 12 916K3F 2

+1760 256F 2− 681 408K2F + 11 025K4− 6322 176K.

(15)

The roots of these polynomials are all real as long asK > Kcritical, whereKcritical is a function
of J . The first few values ofKcritical are listed in table 1. AtK = Kcritical the lowest two
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Table 1. Sequence of critical values forKcritical andFcritical.

J Kcritical Fcritical J Kcritical Fcritical

2 0.0 0.0 16 25.0526 −61.3470
3 3.0 −2.0 17 26.3475 −67.3089
4 5.470 86 −4.718 94 18 27.6149 −73.4116
5 7.655 70 −7.939 82 19 28.8569 −79.6490
6 9.651 84 −11.557 2 20 30.0754 −86.0158
7 11.510 4 −15.507 0 21 31.2721 −92.5072
8 13.262 5 −19.745 9 22 32.4485 −99.1187
9 14.928 7 −24.241 9 23 33.6058−105.846

10 16.523 5 −28.970 6 24 34.7453−112.686
11 18.057 6 −33.912 6 25 35.8679−119.635
12 19.539 2 −39.052 1 26 36.9747−126.689
13 20.974 7 −44.375 8 27 38.0665−133.846
14 22.369 5 −49.872 5 28 39.1439−141.103
15 23.727 6 −55.532 3 29 40.2078−148.458

Figure 1. The spectrum for the QES Hamiltonian (9) plotted as a function ofb for the case
J = 3 and a = 0. For b > 3

4 (corresponding to the critical valueKcritical = 3) the QES
eigenvalues are real and are the three lowest eigenvalues of the spectrum. Whenb goes below
3
4, two of the QES eigenvalues become complex and the third moves into the midst of the
non-QES spectrum. We believe that the non-QES spectrum is entirely real throughout the(a, b)

plane.

eigenvalues become degenerate and whenK < Kcritical some of the eigenvalues of the QES
spectrum are complex. Thus, the QES spectrum is entirely real above a parabolic-shaped
region in the(a, b) plane bounded by the curvea2+ 4b = Kcritical.

Extensive numerical calculations lead us to believe that the non-QES spectrum is entirely
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real throughout the(a, b) plane and that whenK > Kcritical the eigenvalues of the QES
spectrum lie below the eigenvalues of the non-QES spectrum. However, as we enter the
regionK < Kcritical some of the eigenvalues of the QES spectrum pair off and become
complex. Other eigenvalues of the QES spectrum may cross above the eigenvalues of the
non-QES spectrum. In figure 1 we illustrate the caseJ = 3 anda = 0. Note that forb > 3

4
the QES eigenvalues are three lowest eigenvalues of the spectrum. Whenb goes below
3
4, two of the QES eigenvalues become complex and the third moves into the midst of the
non-QES spectrum.

The standard way to understand QES theories is to demonstrate that the Hamiltonian
can be expressed in terms of generators of a Lie algebra. Following Turbiner [3], we use
the generators of a finite-dimensional representation of theSL(2,Q) with spinJ . The three
generators have the form

J + = x2 d

dx
− (J − 1)x J 0 = x d

dx
− J − 1

2

J − = d

dx
.

(16)

If we apply the HamiltonianH in (8) to ψ(x) in (10) and divide by the exponential we
obtain an operatorh acting on the polynomialPJ−1(x); h has the form

h = − d

dx2
+ (2ix2+ 2ax + 2ib)

d

dx
− [2i(J − 1)x − b2− a]. (17)

Hence, in terms of the generators of the Lie algebra, we have

h = −(J −)2+ 2iJ + + 2aJ 0+ 2ibJ − + b2+ aJ. (18)

This algebraic structure possessesPT symmetry and hasreal eigenvalues.

We thank the US Department of Energy for financial support.
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